
817

C H A P T E R 24

EXCEL AND VB.NET

In 2002, Microsoft released the first version of its development suite
Visual Studio.NET (VS.NET) together with the .NET Framework.
Since then, Microsoft has released new versions of the Framework and
development suite in quick succession. Microsoft has strongly indicated
that .NET is the flagship development platform now and for the foresee-
able future.

Visual Basic.NET (VB.NET) is part of VS.NET, and despite its sim-
ilarity in the name with Classic VB (VB6), the two have little in common.
VB.NET is the successor to Classic VB and as such it provides the ability
to create more technically modern solutions, a large group of new and
updated controls, and a new advanced IDE. Moving from Classic VB to
VB.NET is a non-trivial process, primarily because VB.NET is based on a
new and completely different technology platform.

Excel developers also face the situation where applications created
with the new .NET technology need to communicate with applications
based on the older COM technology, for example, VB.NET applications
communicating with Excel. Because Excel is a COM-based application it
cannot communicate directly with code written in .NET.All .NET code
that communicates with Excel must cross the .NET � COM boundary.
This is important to keep in mind because it is a challenge to manage and
can have significant performance implications.

In the first part of this chapter, VB.NET is introduced along with the
.NET Framework. The second part of this chapter focuses on how we can
automate Excel with VB.NET. Finally we cover ADO.NET, which is used
to connect to and retrieve data from various data sources. ADO.NET is the
successor to classic ADO on the .NET platform.

To provide a better understanding of VB.NET, we develop a practical
solution, the PETRAS Report Tool.NET. This solution is a fully func-
tional Windows Forms based reporting tool. It retrieves data from the
PETRAS SQL Server database and uses Excel templates to present the
reports.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 817

818 Chapter 24 Excel and VB.NET

VB.NET, ADO.NET, and the .NET Framework are book-length top-
ics in their own right; what we examine here and in the two following chap-
ters merely scratches the surface. At the end of this chapter you find some
recommended books and online resources that provide additional detail on
these subjects.

.NET Framework Fundamentals

The .NET Framework is the core of .NET. Before we can develop or run
any .NET-based solutions, the Framework must be installed and available.
The Framework provides the foundation for all .NET software develop-
ment. The .NET Framework is also responsible for interoperability
between .NET solutions and COM servers and components. This topic is
covered later in the chapter. For the purposes of our discussion, we can
think of the .NET Framework architecture as consisting of two major
parts:

n A huge collection of base class libraries and interfaces—This
collection contains all the class libraries and interfaces required for
.NET solutions. Namespaces are used to organize these class
libraries and interfaces into a hierarchical structure. The namespaces
are usually organized by function, and each namespace usually has
several child namespaces. Namespaces make it easy to access and use
different classes and simplify object references. We discuss name-
spaces in more detail when presenting VB.NET later in this chapter.

n Common Language Runtime (CLR)—This is the engine of the
.NET Framework, and it is responsible for all .NET base services. It
controls and monitors all activities of .NET applications, including
memory management, thread management, structured exception
handling (SEH), garbage collection, and security. It also provides
a common data type system (CTS) that defines all .NET data types.

The rapid evolution of the .NET Framework is reflected in the large num-
ber of versions available. Different Framework versions can coexist on one
computer, and multiple versions of the Framework can be run side-by-side
simultaneously on the same computer. However, an application can only use
one version of the .NET Framework at any one time. The Framework ver-
sion that becomes active is determined by which version is required by the
.NET-based program that is loaded first. A general recommendation is to
only have one version of the Framework installed on a target computer.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 818

Visual Basic.NET 819

Because there are several different Framework versions in common
use and we may not be able to control the version available on the com-
puters we target, we need to apply the same strategy to the .NET
Framework as we do when targeting multiple Excel versions: Develop
against the lowest Framework version we plan to target. Of course there
will also be situations that dictate the Framework version we need to tar-
get, such as corporate clients who have standardized on a specific version.

As of this writing, the two most common Framework versions are 2.0
and 3.0. Both versions can be used on Windows XP, and version 3.0 is
included with Windows Vista and Windows Server 2008. Visual Studio
2008 (VS 2008) includes both of these Framework versions as well as ver-
sion 3.5. By providing all current Framework versions, VS 2008 makes it
easy to select the most appropriate version to use when building our solu-
tions. Versions 3.0 and 3.5 of the .NET Framework are backward compat-
ible in a similar manner as the latest versions of the Excel object libraries.

The .NET Framework can run on all versions of Windows from Windows
98 forward, but to develop .NET-based solutions we need to have Windows
2000 or later. If we plan to target Windows XP or earlier we need to make
sure the desired version of the .NET Framework is installed on the target
computer, because these Windows versions do not include the Framework
preinstalled. All versions of the Framework are available for download from
the Microsoft Web site and can be redistributed easily. To avoid confusion,
we only use version 2.0 of the .NET Framework in this chapter and the next.

NOTE The standard version 3.5 .NET Framework distribution is around
197MB in size. Microsoft provided a lighter edition of about 25MB in size that
can be installed on the target computers instead. To find out more about this edi-
tion, search for the phrase “.NET Framework Client Profile Deployment Guide”
at www.microsoft.com.

Visual Basic.NET

With VS.NET we can create Web applications, server applications, data-
base applications, console applications, Windows desktop applications,
setup and deployment projects, and much more. VS.NET ships with the
following programming languages: Visual C#, VB.NET, and Visual C++.

VB.NET is distributed in all VS.NET packages as well as in a stand-
alone version. However, not all capabilities are present in all distributions.

24.
EXCEL

AN
D

VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 819

For a full comparison among the versions, see http://msdn.microsoft.com/
en-us/vs2008/products/cc149003.aspx. If you just want to try out VB.NET
you can download the free Express Edition from Microsoft’s Web site.
VS.NET Professional is required if you plan to develop managed COM
add-ins and VSTO solutions. It is also required to follow the discussions
here and in the next two chapters.

VB.NET was the first version of VB that broke backward compatibili-
ty badly enough that you could not even open a project created in an ear-
lier version of VB. If you have non-trivial Classic VB projects that you
would like to transfer to VB.NET, the best choice is to create them from
scratch in VB.NET. Microsoft has some tools to ease the transition, but for
larger VB projects they cannot do all the work. On the other hand, you may
also consider keeping your Classic VB solutions for as long as it is still pos-
sible to run them on the Windows versions your solution targets. VB.NET
is the first BASIC language version that fully supports object oriented pro-
gramming (OOP). It means that with VB.NET we can fully utilize encap-
sulation, inheritance, and polymorphism.

Code that targets the .NET runtime is described as managed code
while code that cannot be hosted by the .NET runtime is described as
unmanaged code. Assemblies are the binary units (*.DLL or *.EXE)
that contain the managed code. Since it is common that one .NET assem-
bly contains only one binary unit, it is safe to refer to .NET-based DLL
files as assemblies.

You need to select the version of VB.NET that fits your requirements best.
Table 24-1 shows the capabilities related to Excel development and the
distributions in which they are available.

Table 24-1 Available Tools in Different Versions of VS.NET

VB.NET
Express

VS.NET
Standard

VS.NET
Professional

Automate Excel 3 3 3

Shared Add-in Template (To create
managed COM add-ins with.)

3 3

Office templates 3

Visual Studio Tools for Office System
(VSTO)

3

820 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 820

Visual Basic.NET 821

24.
EXCEL

AN
D

VB.NET

The Visual Studio IDE
The Visual Studio IDE (VS IDE) is shared by all .NET programming
languages. The VS IDE is a complex development environment, even for
developers who are very familiar with the Classic VB IDE. Figure 24-1
shows the VS IDE with a simple VB.NET Windows Forms project open.

When you first run VS.NET, you are prompted to select a development
category for VS.NET to use in customizing the environment. If your pre-
vious experience is with Classic VB or VBA, you will probably want to allow
VB.NET to be your first choice of programming language. In this case,
choose the Visual Basic Development Settings. The VS IDE is also
highly customizable by the user, but before beginning to customize it you
should learn the basics using the default configuration.

FIGURE 24-1 The Visual Studio .NET IDE

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 821

General Configuration of the VS IDE
After launching the VS IDE, you should change some general configura-
tion settings for the development environment. Start by selecting Tools >
Options... from the menu. This displays the Options dialog shown in
Figure 24-2.

The Options dialog organizes its settings in a tree view on the left side. The
VB Defaults section under Projects and Solutions contains four of the more
important settings for VB.NET development. We recommend that you set
them exactly as shown in Figure 24-2. A detailed description of each
setting follows:

n Option Explicit—Determines whether VB.NET requires us to
declare all variables before using them.

n Option Strict—Turning on this setting disallows late binding (to
improve performance), implicit data type conversion, and provides
strong typing (strict use of type rules with no exceptions).

n Option Compare—Specifies the default method used for string
comparisons. It can either be Binary (case-sensitive) or Text (case-
insensitive). The default value is Binary, which provides the same
text comparison behavior as Classic VB. See Chapter 3, “Excel and
VBA Development Best Practices,” for more information.

n Option Infer—When this setting is turned on it allows us to omit
the data type when declaring a variable and instead let VB.NET

FIGURE 24-2 The general Options dialog

822 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 822

Visual Basic.NET 823

24.
EXCEL

AN
D

VB.NET

identify (“infer”) the data type. Listing 24-1 shows a simple example.
The right-hand value tells the compiler the data type is an Integer.
Declaring a variable and giving it a value at the same time in this
manner is fully supported in VB.NET.

Listing 24-1 Omitting the Data Type When Declaring a Variable

Dim iCountRows = 225

When working with VB.NET solutions (a solution can contain one or
more projects), these settings can be overridden at the code module level.
This means, for example, that if we really need to use late binding in one
code module we can modify the Option Strict setting at the top of that
code module. Listing 24-2 shows how to turn off the Option Strict setting
and also change comparisons to Text.

Listing 24-2 Changing Settings at the Code Module Level

Option Compare Text

Option Strict Off

Adding line numbers to your code can make many development tasks eas-
ier, the debugging process in particular. To activate this option, expand the
Text Editor section in the Options dialog and select the Basic section below
it. Check the option Line numbers and then close the dialog.

Next we make screentips and keyboard shortcuts available in the IDE.
Choose Tools > Customize... from the menu. This displays the Customize
dialog shown in Figure 24-3. Check the two options Show ScreenTips on
toolbars and Show shortcut keys in ScreenTips and then close the dialog.

The final setting is to make various docked windows in the IDE hide
themselves when they are not being used. This provides us with a workspace
that is not cluttered with open windows not relevant to the current context.

1. Click on the window you want to hide so it gets the focus.
2. On the Window menu click on the option Auto Hide or click on the

pushpin icon on the title bar for the window.
3. Repeat these steps for every window that you want to auto hide.

When an auto-hidden window loses focus, it automatically slides back to its
tab on the edge of the IDE.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 823

FIGURE 24-3 The Customize dialog

Creating a VB.NET Solution
We create a new VB.NET project by selecting the File > New Project...
from the menu. This displays the New Project dialog shown in
Figure 24-4.

FIGURE 24-4 The New Project dialog

824 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 824

Visual Basic.NET 825

24.
EXCEL

AN
D

VB.NET

Since we are creating a Windows based-solution, select Windows in
the Project types section and then select the Windows Forms Application
template. We also select the version of .NET Framework to target using
the combo box in the upper-right corner. Next, enter the name “First
Application” in the Name box. By default, the solution name is the same as
the name entered in the Name box, as shown in Figure 24-4. The solution
name is also used to name the main folder of the project. Finally, click the
OK button to create the solution.

The Solution Explorer window provides the workspace for working
with files and projects inside VB.NET solutions. Figure 24-5 shows the
workspace for our solution. A single Windows Form has been added to the
solution and we have right-clicked on the form to display the shortcut
menu containing the various actions available to perform on that object.

Windows Forms are the basic building block of many solutions. They pro-
vide us with a graphical user interface to which we can add controls.
Windows Forms and all other Windows controls are contained in the
System.Windows.Forms namespace. Windows Forms are in many ways
identical to their counterpart Forms in Classic VB but are more modern
and offer more properties to work with.VB.NET provides a large number
of Windows controls for various purposes. However, use the new controls
with good judgment. They exist to create a friendly user interface, not con-
fuse the user.

FIGURE 24-5 The Solution Explorer window

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 825

Although VB.NET is designed to use Windows Forms controls, we can
still use ActiveX controls. Therefore, if we own expensive third-party
ActiveX controls, we can still use them in VB.NET. To add a control to a
Windows Form, click the control’s icon in the Toolbox and then drag and
drop over the area on the form where you want the control to be placed.
For our solution we add a label control, combo box, and two buttons to the
Windows Form and resize the form itself. Figure 24-6 shows how the final
Windows Form looks.

Before we add code to the Windows Form, we set the tab order for the
controls. Select View > Tab Order from the menu. The tab order for each
control is now displayed visually on the form. Clicking on a control’s tab
number increases the number. Change the tab order so that it matches the
order shown in Figure 24-7. To exit the tab order view, select View > Tab
Order from the menu again.

As a final step, we add code to the solution. Select View > Code from the
menu. This opens the class module for the Windows Form. The first event
we use is the Load event of the Windows Form. This is created by first
selecting (Form1 Events) from the combo box in the upper-left corner of
the module and then selecting Load from the combo box in the upper-right
corner of the module. Listing 24-3 shows the code in the Load event.

FIGURE 24-6 The Windows Form

FIGURE 24-7 The tab order for the form

826 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 826

Visual Basic.NET 827

24.
EXCEL

AN
D

VB.NET

Listing 24-3 The Code for the Load Event of the Windows Form

Private Sub Form1_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles Me.Load

‘Create and populate the array with names.

Dim sArrNames() As String = {“Rob Bovey”, _

“Stephen Bullen”, _

“John Green”, _

“Dennis Wallentin”}

With Me

‘The caption of the Form.

.Text = “First Application”

‘The captions of the label and button controls.

.Label1.Text = “Select the name:”

.Button1.Text = “&Show value”

.Button2.Text = “&Close”

‘Populate the combobox control with the list

‘of names.

With .ComboBox1

.DataSource = sArrNames

.SelectedIndex = -1

End With

End With

End Sub

In this code, we create a string array, set values for various control proper-
ties, and then add the array as a data source for the combo box control. We
use a single dimension array to populate the combo box with the list of
names. It is a perfectly accepted practice to declare and initialize an array
at the same time in VB.NET, as shown in Listing 24-3. When using this
approach we do not need to specify the size of the array because this is
inferred from the number of items within the scope of the curly brackets.

The next step is to get the selected value from the combo box and dis-
play it in a message box. Before doing that we need to import the name-
space System.Windows.Forms into the code module, which gives us a short-
cut to the .NET MessageBox class. Importing namespaces saves keystrokes
each time we refer to objects that are part of the imported namespaces. It
also makes our code easier to read and maintain by making it less verbose.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 827

The Imports statements tell the compiler which namespaces the code
uses. Usually we first set a reference to a namespace and then we import
it to one or more code modules. Here we only do the latter because the
System namespace is referenced by default in all new VB.NET solutions.
This is because Visual Studio automatically adds a reference to the System
namespace when a new VB.NET project is created. At the top of the
Form’s class module we add the Imports statement shown in Listing 24-4.

Listing 24-4 The Imports Statement

’To use the messagebox object.

Imports System.Windows.Forms

The namespace Microsoft.VisualBasic also belongs to the namespaces
that are referenced by default in all new VB.NET solutions. This name-
space is also globally imported, which means we do not need to import it
into individual code modules to use it. From a practical standpoint this
means we can use the well-known MsgBox function instead of its .NET vari-
ant. However, in Listing 24-5 we use .NET MessageBox class in the Click
event for Button1, which displays the selected name in a message box.

Listing 24-5 Show Selected Name

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

‘Make sure that a name has been selected.

If Me.ComboBox1.SelectedIndex <> -1 Then

‘Show the selected value.

MessageBox.Show(_

text:=Me.ComboBox1.SelectedValue.ToString(), _

caption:=”First Application”)

End If

End Sub

The final piece of the puzzle is to add a command to close (unload) the
Windows Form in the Button2 Click event. Listing 24-6 shows the
required code.

828 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 828

Visual Basic.NET 829

24.
EXCEL

AN
D

VB.NET

Listing 24-6 Unload the Windows Form

Private Sub Button2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button2.Click

Me.Close()

End Sub

To begin testing the application, we just have to press the F5 key. Figure
24-8 shows the First Application in action after we select a value in the
combo box and then click the Show value button.

Whenever we execute the application in the debugger, the VS IDE creates
a number of new files, including an executable file for our application.
These files are located in the ..\First Application\bin\Debug folder. A work-
ing example of this solution can be found on the companion CD in the
\Concepts\Ch24 - Excel & VB.NET\First Application folder. If you just
want to run the application without opening it in Visual Studio, the First
Application executable file can be found in the \Concepts\Ch24 - Excel &
VB.NET\First Application\First Application\bin\Debug folder on the CD.

Structured Exception Handling
When an unexpected condition occurs in managed code, the CLR creates
a special object called an exception. The exception object contains prop-
erties and methods that give detailed information about the unexpected
condition. Because we deal with exceptions rather than errors in .NET
development, we use the expression exception handling rather than error
handling.

FIGURE 24-8 Our first application in action

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 829

Exception handling covers the techniques used to detect exceptions
and take appropriate actions after they are detected. Structured excep-
tion handling (SEH), is the term used to describe how we implement
exception handling in managed code. Although it is possible to use the
Classic VB error handling approach in VB.NET, we strongly encourage the
use of SEH because it gives us much better options for dealing with excep-
tions. SEH consists of the following building blocks:

n Try—We place the code we want to execute in this block. This code
may create one or more exceptions.

n Catch—In this block we place the code that handles the excep-
tions. It is possible to place several Catch blocks within the same
structure to handle different types of exceptions. Catch blocks are
optional.

n Finally—Code placed in this block always is executed, which
makes this block a perfect place for code to clean up and release ref-
erences to objects like COM objects and ADO.NET objects. This
block is also optional.

n End Try—Ends the SEH structure.

Listing 24-7 shows the skeleton structure of SEH in code. When we enter a
Try statement in a code module, the VS IDE automatically adds the Catch

block and End Try statement. The Finally block must be typed manually.

Listing 24-7 The Building Blocks of SEH

Private Function iDiscount(ByVal iPrice As Integer) As Integer

Try

‘Do the calculation here.

Catch ex As Exception

‘In case of any unexpected scenarios take

‘some action here, like a message to the user.

End Try

End Function

Most of the namespaces in the .NET Framework class library include
their own specific exception classes, which make it possible to catch

830 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 830

Visual Basic.NET 831

24.
EXCEL

AN
D

VB.NET

them in separate Catch blocks. All built-in exception classes extend the
built-in System.Exception class. Catch blocks are executed (or tested
for execution) in the order in which they are coded. .NET works its way
through the Catch blocks trying to find a matching exception type.
Therefore the preferred approach is to implement the Catch blocks with
more specific exception types first, followed by the Catch blocks with the
more generic exception types. Listing 24-8 shows an example using two
Catch blocks.

Listing 24-8 Using Several Catch Blocks and the Finally Block

Try

frmSaveFile = New SaveFileDialog

With frmSaveFile

.Filter = “XML File|*.xml”

.Title = “Save report to XML file”

.FileName = sFileName

End With

dtTable.WriteXml(fileName:=sFileName)

dtTable.WriteXmlSchema(_

fileName:=Strings.Left(sFileName, _

Len(sFileName) - 4) & “.xsd”)

Catch XMLexc As Xml.XmlException

MessageBox.Show(text:=sMESSAGENOTSAVEDXML, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

Catch COMExc As COMException

MessageBox.Show(text:= _

sERROR_MESSAGE & _

sERROR_MESSAGE_EXCEL, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

Catch Generalexc As Exception

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 831

MessageBox.Show(text:=sMESSAGENOTSAVEDGENERAL, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

Finally

frmSaveFile.Dispose()

frmSaveFile = Nothing

End Try

The first Catch block handles any XmlException exceptions. The second
block catches COM exceptions that might occur when working with COM
servers like Excel. The final Catch block is generic and handles all other
exceptions. The example also shows how we can use the Finally block to
release an object. Listing 24-8 also shows how to use custom error mes-
sages to respond to each exception type.

During development we need to see the underlying technical details
for all exceptions. In Listing 24-9 the previously customized end user mes-
sages have been replaced with the exception object and its method
ToString in each Catch block. The ToString method gives a textual sum-
mary of the exception. You can also use the GetBaseException method to
return the first exception in the chain.

Listing 24-9 Displaying Exception Descriptions

Catch XMLexc As Xml.XmlException

MessageBox.Show(XMLexc.ToString())

Catch COMExc As COMException

MessageBox.Show(COMExc.ToString())

MessageBox.Show(COMExc.ErrorCode.ToString())

Catch Generalexc As Exception

MessageBox.Show(Generalexc.ToString())

When VB.NET receives an exception from a COM server like Excel, it
checks the COM exception code and tries to map that code to one of the

832 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 832

Visual Basic.NET 833

24.
EXCEL

AN
D

VB.NET

.NET exceptions classes. If this fails, which is the most common outcome,
VB.NET throws a large and mostly unhelpful HRESULT message like the
one shown in Figure 24-9.

The line of code that generates this message is the first MessageBox.Show
line under the COM exception block in Listing 24-9. COM exceptions are
wrapped into generic COMException objects when .NET does not have a
matching exception class for the HRESULT error generated by a COM
component.

In SEH, it is possible to exit a Try block with the Exit Try statement.
This statement can be placed either in the Try block or in any Catch block.
Any code in a Finally block is still executed after the Exit Try statement.

Another option is to use nested Try structures. A nested SEH can be
added either to the Try block or to a Catch block. When using nested
exception handlers the InnerException property of the exception object
becomes very important. It helps us determine the cause of the nested
exception and allows us to obtain the chain of exceptions that led to that
exception.

We can use the Throw statement to communicate exceptions to the call-
ing code. Throw is usually used within a Catch block only if the exception is
to be bubbled up the call stack. A Throw statement causes code execution to
be intentionally interrupted. The Throw statement also allows us to create
our own exceptions, but this topic is beyond the scope of this chapter.

Modules and Methods, Scope and Visibility
When we make a declaration at the module level (module here stands for
module, class, or structure), the access level we choose determines the
scope of the thing being declared. In VB.NET we can use the keywords
Public and Private, which have the same scopes as in Classic VB, but
VB.NET also provides the following additional keywords to specify mod-
ule scope and visibility:

FIGURE 24-9 The COM exception message

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 833

n Friend—A data member or method (function or subroutine)
declared with the Friend modifier can be accessed from any part of
the program containing the declaration. This is not a new keyword,
as it is also available in Classic VB. However, if we do not explicitly
include a scope in our declaration, then the default scope is Friend
in VB.NET, while in Classic VB the default scope is Public.

n Protected—Data members or methods declared with Protected
scope are only accessible from the module itself or from derived
classes.

n Protected Friend—This scope is equivalent to the union of
Protected and Friend access. A data member or method declared as
Protected Friend is accessible from anywhere in the program in
which the declaration occurs, or from any derived class containing
the declaration.

Declare Variables and Assign Values
In VB.NET, we declare local variables using the keyword Dim, module-
level variables using the keyword Private, solution-level variables using
the keyword Friend, and public variables using the keyword Public. All
.NET programming languages provide the option to declare variables and
assign values to them at the same time.

The first two lines in Listing 24-10 show how we can declare variables
and initialize them with values using one line of code. The third line creates
three String variables without assigning any values to them. Since they don’t
have assigned values, these String objects are marked as unused local vari-
ables by the VS IDE. This is a result of the Option Strict setting being on.
Good coding practice in .NET says that we should always assign known val-
ues to variables, even if they initially will not have any “real” values. Lines 4
through 6 show how we can achieve this in practice.

Listing 24-10 Declare Variables and Assign Values to Them

1 Dim sTitle As String = “PETRAS Report Tool”

2 Dim iPrice As Integer = 100

3 Dim sAddress, sCity, sCountry As String

4 Dim sName = String.Empty

5 Dim bReportStatus = Nothing

6 Dim iNumberOfRecords As Integer = Nothing

7 Dim iNumberOfColumns As Integer = dtTable.Columns.Count - 5

8 Dim iNumberOfRows As Integer = dtTable.Rows.Count - 1

9 Dim obDataArr(iNumberOfRows, iNumberOfColumns) As Object

834 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 834

Visual Basic.NET 835

24.
EXCEL

AN
D

VB.NET

Lines 7 and 8 in Listing 24-10 contain two variables that hold the number
of columns and rows of a DataTable (an ADO.NET object covered later
in this chapter). These two variables are then used as parameters to dimen-
sion the array of data type Object in line 9. The data type Object is the
VB.NET counterpart to the data type Variant in Classic VB. An Object
array behaves in roughly the same manner as a Variant array.

VB.NET also offers the ability to declare variables anywhere in the
code. Listing 24-11 shows an example where we have declared a variable
within a Try block in conjunction with a For...Next loop.

Listing 24-11 Block Scope Variable Declaration

Try

For iCountRows As Integer = 0 To 9

‘Do the iteration.

Next iCountRows

Catch ex As Exception

MessageBox.Show(ex.ToString())

End Try

Block scope can also be achieved by declaring variables within
With...End With blocks, For...Next blocks, and Do...Loop blocks. In
Listing 24-12 we show a variable that is declared in a Do...Loop.

Listing 24-12 Block Scope within a Do...Loop

’Declaration of a variable with

‘a block scope of Do...Loop.

Do

Dim iMonth As Integer = 1

‘Other code goes here...

Loop

However, declaring variables using this method may cause unexpected
problems. This is because the scope of variables declared in this manner is
limited to the block in which they are declared. This means we cannot

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 835

access these variables or use them outside that block. Code that uses this
method can also be more difficult to debug and maintain. In general we
should avoid this approach. Good coding practice suggests that all variables
used within a method should be declared at the beginning of that method.

Creating New Instances of Objects
We can create new instances of objects in VB.NET using the same tech-
niques as in Classic VB. The only difference is that we do not use the Set
keyword in VB.NET. Listing 24-13 shows two methods of creating objects
in VB.NET. The Nothing keyword is a way of telling the system that the
variable does not currently have any value but still may use memory.

Listing 24-13 Declare and Instantiate Objects

’The classic approach.

Dim frmSaveDialog As SaveFileDialog = Nothing

frmSaveDialog = New SaveFileDialog

‘.NET approach.

Dim frmSaveDialog As New SaveFileDialog

The .NET approach is singled out in the second example in Listing 24-13,
which shows that we declare and set the variable to a new instance of the
SaveFileDialog class with one line of code. Although the .NET approach
may look attractive, we still recommend using the classic approach. This is
also outlined as the best practice in Chapter 3.

Using the .NET approach can cause unwanted exceptions because of
the block scoping of variables. For example, if we create a new instance of
the SaveFileDialog component and we want to trap any exceptions that
may occur (or we want to throw an exception), block scoping of the vari-
able itself causes an exception. This is demonstrated in Listing 24-14,
where we have declared and instantiated the frmSaveDialog object vari-
able in the Try block. However, because the scope of this variable is limit-
ed to the Try block, the VS.IDE displays a compile error for the two lines
of code inside the Finally block.

Listing 24-14 Using the .NET Approach

Sub Show_Save_Dialog()

Try

836 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 836

Visual Basic.NET 837

24.
EXCEL

AN
D

VB.NET

Dim frmSaveDialog As New SaveFileDialog

frmSaveDialog.ShowDialog()

Catch ex As Exception

Finally

frmSaveDialog.Dispose()

frmSaveDialog = Nothing

End Try

End Sub

To correct this problem, we modify the code to use the classic approach as
shown in Listing 24-15. The frmSaveDialog variable can now be seen
throughout the Try block, and it traps any exceptions that may occur.

Listing 24-15 Using the Classic Approach

Sub Show_Save_Dialog()

Dim frmSaveDialog As SaveFileDialog = Nothing

Try

frmSaveDialog = New SaveFileDialog

frmSaveDialog.ShowDialog()

Catch ex As Exception

MessageBox.Show(ex.ToString())

Finally

frmSaveDialog.Dispose()

frmSaveDialog = Nothing

End Try

End Sub

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 837

Using ByVal or ByRef
Unlike Classic VB, procedure arguments in VB.NET are passed ByVal by
default not ByRef. If we do not explicitly specify procedure arguments as
either ByVal or ByRef, the VB.NET default is ByVal. However, good practice
states that we should always explicitly specify the keyword we want to use.

Using Wizards in VB.NET
Compared to the wizards in Classic VB, the wizards in VB.NET have been sig-
nificantly improved. New wizards have also been added to the VS IDE. The
advantage of using a wizard is that we get the desired result in a fast and reli-
able way without needing to have a deep understanding of the process. The
wizard takes care of the details. The disadvantage of using a wizard is that the
wizard works in “black box” mode, which means we do not have much control
over the process. Developing real-world applications requires you to be in
control and to understand your solutions inside and out. You can explore the
wizards in the VS IDE, but for any non-trivial solution you should avoid them.

Data Types in VB.NET
Compared with Classic VB, some data types are new in VB.NET. Table 24-
2 shows most of the VB.NET data types but not all of them.

Table 24-2 Data Types in VB.NET

Data
Type

Size Values

Boolean 2 bytes True or False.

Short 2 bytes -32,768 to 32,768.

Integer 4 bytes -2,147,483,648 to 2,147,483,648.

Long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,808.

Decimal 16 bytes It provides the greatest number of significant digits for a
number.

Double 8 bytes It provides the largest and smallest possible magnitudes for a
number.

838 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 838

Visual Basic.NET 839

24.
EXCEL

AN
D

VB.NET

As we can see in Table 24-2, the data type Short includes the interval
-32,768 to 32,768, and the Integer data type now covers a much greater
interval than it does in Classic VB. The Currency data type is no longer
available in VB.NET. It has been replaced by the new Decimal data type,
which can handle more digits on both sides of the decimal point. The Byte
data type from Classic VB has no counterpart in VB.NET. The data type
Object is the universal data type in VB.NET, taking the place of the
Variant data type in Classic VB.

String Manipulation
As previously mentioned, whenever a new .NET solution is created the
namespace Microsoft.VisualBasic is included by default. This provides
access to the .NET versions of the well-known string functions in Classic
VB. The .NET Framework also provides us with a System.String class to
manipulate strings. However, using the old functions has no negative
impact on solution performance, so using the old familiar functions is com-
pletely acceptable.

Using Arrays in VB.NET
The .NET Framework provides us with powerful new options for creating
and using arrays and collections in VB.NET. There are two basic kinds of
VB.NET arrays. Arrays that we declare as array variables of a specific data
type by using parentheses after the variable name are normal arrays. We
can also use the Array class, which provides us with a new array data type
that offers methods for managing items in arrays as well manipulating
arrays. Arrays in VB.NET inherit from the Array class in the System
namespace, so methods of the Array class can also be used with normal
arrays.

In this section, we discuss normal arrays along with some methods of
the Array class. In VB.NET, all arrays are zero-based. This is important to
keep in mind, especially when working with Excel objects or Classic VB

Table 24-2 Data Types in VB.NET

Data
Type

Size Values

String Variable A string can hold 0 to 2 billion Unicode characters.

Date 8 bytes January 1, 0001 0:0:00 to December 31,9999 11:59:59.

Object 4 bytes Point to any type of data.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 839

code that may have 1-based arrays. We already showed one way to use an
array in Listing 24-3, where we used an array to populate a combo box con-
trol. In Listing 24-16 we use the same approach to populate a list box con-
trol and then add the selected items to an array.

Listing 24-16 Populate an Array with Selected Items from a List Box

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

‘Make sure that at least one item is selected.

If Me.ListBox1.SelectedIndex <> -1 Then

‘Grab the number of selected items.

Dim iCountSelectedItems As Integer = _

Me.ListBox1.SelectedItems.Count - 1

‘Declare and dimension the one-dimensional array.

Dim sArrSelectedItems(iCountSelectedItems) As String

‘Populate the array.

For iCountSelectedItems = 0 To iCountSelectedItems

sArrSelectedItems(iCountSelectedItems) = _

Me.ListBox1.SelectedItems(iCountSelectedItems).ToString()

Next iCountSelectedItems

‘Show the number of items in the array.

MessageBox.Show(CStr(sArrSelectedItems.GetLength(0)))

‘Show the lower bound of the array.

MessageBox.Show(CStr(sArrSelectedItems.GetLowerBound(0)))

‘Show the upper bound of the array.

MessageBox.Show(CStr(sArrSelectedItems.GetUpperBound(0)))

‘Iterate through the array and display each value.

For iCountSelectedItems = sArrSelectedItems.GetLowerBound(0) _

To sArrSelectedItems.GetUpperBound(0)

MessageBox.Show(text:= _

sArrSelectedItems(iCountSelectedItems).ToString())

Next iCountSelectedItems

End If

End Sub

840 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 840

Visual Basic.NET 841

24.
EXCEL

AN
D

VB.NET

When working with arrays we should always specify which dimension
we are targeting. Since we are working with a one-dimensional array in this
example, the dimension we are targeting is zero.

One of the more resource-intensive processes in VB development is
redimensioning arrays, so we should always look for ways to reduce or
eliminate this process. Listing 24-16 shows how VB.NET allows us to do
this easily. We first retrieve the number of selected list items and then
declare and dimension the array all at once. Note that in Listing 24-16 we
use the GetLowerBound and GetUpperBound methods to return the
lower bound and upper bound index values for the array. Both these meth-
ods are part of the Array class. In some scenarios we may not know the
bounds for an array initially, but we can get the necessary information later.
Listing 24-17 shows how we can initialize an array after declaring it.

Listing 24-17 Declare an Array and Initialize It Later

Dim iNumberOfHouses() As Integer

...

...

iNumberOfHouses = New Integer() {10, 15, 20}

Listing 24-16 shows one way to iterate an array, but we could actually enu-
merate it as shown in Listing 24-18.

Listing 24-18 Enumerating an Array

Dim iNumberOfHouses() As Integer = {10, 15, 20}

Dim iItem As Integer

For Each iItem In iNumberOfHouses

Debug.WriteLine(iItem)

Next iItem

The Array class also provides methods that allow us to manipulate the
items in different ways. Among the more common actions we might want
to perform on an array are reversing the order of items in the array, sort-
ing the array, removing items from the array, returning specific array items,
and copying items from one array to another. Listing 24-19 shows how to
perform these operations using methods of the Array class.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 841

Listing 24-19 Methods of the Array Object

Dim sArrProjects() As String = _

{“Upgrade”,”Investment”, “Maintenance”}

Array.Reverse(sArrProjects)

Array.Sort(sArrProjects)

Array.Clear(sArrProjects, 0, 1)

Dim sItem As String = sArrProjects.GetValue(1).ToString()

Dim sArrProjectsCopy(sArrProjects.GetLength(0)) As String

Array.Copy(sArrProjects, sArrProjectsCopy, _

sArrProjects.GetLength(0))

The first example shows how to reverse the order of the items in an array.
The second example sorts the array in ascending order. The third example
shows how to delete the first item from an array. Note that deleting an item
from an array in this manner does not resize the array or move any of the
other items into new positions in the array.

To get a specific item value from an array you use the GetValue
method, as shown in the fourth example. And as the final example shows,
we can even copy one array to another using the Copy method. The last
argument of this method allows us to specify the number of items to be
copied. This can be a good alternative to the redimension approach when
resizing an array. In this example we copy all items from the first array into
the second array.

Next we demonstrate how to search for a value in an array using the
BinarySearch method. This method is useful when you want to deter-
mine whether a specific value exists in an array. To use this method the
items in the array must be sorted. The result of executing the BinarySearch
method is an integer that represents the index number of the value you are
searching for within the array. If the result is -1 the value you are search-
ing for does not exist. If the value you are searching for exists more than
once within the array, the index number of the last occurrence is returned.

Listing 24-20 shows how to use the BinarySearch method to locate the
index number of an item in an array. There are also several other methods
of the array object that allow us to find specific items and work with them
in various ways.

842 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 842

Visual Basic.NET 843

24.
EXCEL

AN
D

VB.NET

Listing 24-20 The BinarySearch Method

Dim sArrProjects() As String = _

{“Upgrade”, “Investment”, “Maintenance”}

Dim sSearchedValue As String = “Investment”

Array.Sort(sArrProjects)

Dim iSearchedIndex As Integer = _

Array.BinarySearch(sArrProjects, sSearchedValue)

MessageBox.Show(CStr(iSearchedIndex))

A good alternative to the normal array is the ArrayList class, which is part
of the System.Collection namespace. By using this class we can dynami-
cally increase a list, hold several different data types in one list, manipulate
the elements in a list, and manipulate ranges of elements in one operation.
The ArrayList is something of a hybrid between the Array and Collection
objects. In Listing 24-21 we demonstrate the use of an ArrayList object.

Listing 24-21 Working with the ArrayList Object

Dim Arrlst As New ArrayList(7)

Dim oArrlstObject As Object = Nothing

Debug.Print(Arrlst.Capacity.ToString())

With Arrlst

.Add(“Dennis”)

.Add(True)

.Add(12)

End With

Debug.Print(Arrlst(1).GetType.ToString())

Dim sNames() As String = {“Rob Bovey”, _

“Stephen Bullen”, _

“John Green”, _

“Dennis Wallentin”}

Arrlst.AddRange(sNames)

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 843

Arrlst.RemoveRange(0, 3)

Arrlst.TrimToSize()

Debug.Print(Arrlst.Capacity.ToString())

For Each oArrlstObject In Arrlst

Debug.Print(oArrlstObject.ToString())

Next oArrlstObject

Me.CheckedListBox1.DataSource = Arrlst

We first create a new ArrayList object and dimension it to hold seven
items. Expanding an ArrayList is a resource-intensive process, so we want
to try and create it with the capacity to hold as many items as we will need.
The first debug print command gives us the current capacity of the
ArrayList. We then populate the ArrayList object with items that represent
different data types, in this case a string value, a boolean value, and an inte-
ger value. To verify that the ArrayList actually holds different data types we
print the data type of the second item to the Immediate window using the
GetType method.

Next we add a range of values to the ArrayList using the AddRange
method. Our ArrayList already has the capacity to hold these new items,
but if an ArrayList does not have sufficient capacity to hold the number of
items being added it automatically expands itself. The RemoveRange
method enables us to remove several items at once, so next we use this
method to remove the first three items we added to it. At this stage the
ArrayList object still has a capacity of seven items, but since we no longer
need them all we resize it by using the TrimToSize method. Using the
debug print command to check the capacity of the ArrayList after resizing
it should show a capacity of four items. Just to check which values the
ArrayList now holds we iterate over all its items using a For...Each loop.
Finally, the collection of items in the ArrayList is added to a
CheckedBoxList control.

In addition to the ArrayList, the .NET Framework provides addition-
al data structures like Stack and Queue. The Stack class is a data structure
that allows adding and removing objects from one position only. This posi-
tion is referred to as the “Top” of the stack. The last object placed on the
stack is the first one to be removed. This is a Last In First Out (LIFO)
data access method. The Queue class is a data structure that allows us to

844 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 844

Debugging 845

24.
EXCEL

AN
D

VB.NET

add objects to the back and remove objects from the front. This is a First
in First Out (FIFO) data access method.

Debugging

The most important task in development is to debug non-trivial solutions.
The VS IDE offers a large number of tools to assist you in this task.
Depending on the complexity of the solution, debugging can be quite dif-
ficult and time consuming. One of the best features of the VS IDE is that
we can interact with it during debugging sessions.

Selecting the Debug menu reveals the available tools and options. As
we can see, most of the commands and windows are familiar from Classic
VB. During the debugging process, and while in break mode, additional
tools become available as shown in Figure 24-10. Although a detailed walk-
through is beyond the scope of this chapter, we focus on the most impor-
tant new and updated debugging tools that the VS IDE provides. See the
Chapter 16, “VBA Debugging,” for a more detailed discussion of the
debugging process.

Set Keyboard Shortcuts
Before we start to explore the many tools for debugging, we customize our
keyboard shortcuts. Select Tools > Options... from the menu to display the

FIGURE 24-10 Debugging tools available in break mode

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 845

Options dialog. In the Options dialog tree view, select the Keyboard sec-
tion under Environment, as shown in Figure 24-11.

This section allows us to set the mapping scheme for keyboard shortcuts.
Changing the mapping scheme to Visual Basic 6.0 provides access to all
the well-known VB6 keyboard shortcuts in the VS IDE. This change is
global, meaning it will be applied for all VB.NET solutions in the VS IDE.
The keyboard shortcuts mentioned in the rest of this chapter assume this
setting has been made in your environment.

Enable Unmanaged Code Debugging
If we do a lot of interoperability development, that is, calls to COM
objects, the option Enable unmanaged code debugging gives us the possi-
bility to debug the native code. Select Project > [Solution Name]
Properties... from the menu to display the Properties window; then select
the Debug tab and check this option.

The Exception Assistant
Whenever a runtime exception is thrown, the Exception Assistant high-
lights the line of code that caused the exception and displays a dialog with
suggestions on how to solve the problem. Figure 24-12 shows the
Exception Assistant in action.

The Exception Assistant attempts to provide context-sensitive help
related to the exception, and it allows the developer to perform certain

FIGURE 24-11 Keyboard shortcuts

846 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 846

Debugging 847

24.
EXCEL

AN
D

VB.NET

FIGURE 24-12 The Exception Assistant

actions, such as viewing details of the exception and copying exception
information to the Clipboard. For COM exceptions, however, the infor-
mation provided by the Exception Assistant is of limited value.

We can provide troubleshooting tips for our own exception types by
creating an XML file containing the information in the correct
ExceptionAssistantContent directory under C:\Program Files\Microsoft
Visual Studio 9.0\Common7\IDE\ExceptionAssistantContent.

The Object Browser (F2)
The Object Browser is one of the most valuable development resources.
The VS IDE ships with a modern Object Browser that can be customized
by selecting the Object Browser Settings icon on its toolbar, as shown in
Figure 24-13. We can also add components to the Custom Component Set
Browsing scope by selecting the Edit Custom Component Set button
directly to the right of the Browse drop-down in the Object Browser tool-
bar.

FIGURE 24-13 The Object Browser

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 847

The Browse drop-down is used to limit the scope of items displayed in
the Object Browser. One of the selections available is to browse My
Solution, as shown in Figure 24-13. This option allows us to browse the
objects in our solution as well as any outside namespaces the solution ref-
erences.

The Error List Window (Ctrl+W Ctrl+E)
The Error List window shows errors, warnings and other messages that
result from attempting to compile the active project. It detects most com-
mon syntax and deployment errors. Figure 24-14 shows an example Error
List window displaying some errors. Double-clicking on an item in the list
takes you to the module and line of code it refers to.

The keyboard shortcut to display the Error List window requires two steps,
Ctrl+W followed by Ctrl+E. It may feel a bit odd to use two instructions
to access a feature, but this reflects how many features the VS IDE
contains.

The Command Window (Ctrl+Alt+A) and Immediate
Window (Ctrl+G)
The Command window and Immediate window overlap each other to
some degree, but they actually have two different tasks to accomplish. The
Command window allows you to execute VS IDE commands instead of
going through the menus and toolbars. It can also execute commands to
open other windows.

Suppose we have started a debugging session and we are running in
break mode. If we enter the command shown in Listing 24-22 into the
Command window the variable bExport will be added to the Watch window.

FIGURE 24-14 The Error List window

848 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 848

Debugging 849

24.
EXCEL

AN
D

VB.NET

Listing 24-22 Add a Watch Using the Command Window

>Debug.AddWatch bExport

If we want to see all the command aliases, or command shortcuts, defined
by the VS IDE, we can run the command >Alias in the Command window
to produce a list.

The Immediate window in the VS IDE behaves much like its counter-
part in Classic VB. We can assign variables, run procedures, and invoke
methods in standard VB.NET syntax in the Immediate window.

The Output Window (Ctrl+Alt+O)
The Output window displays compilation results and the text output from
several tools such as Debug and Trace. The Show output from: drop-down
in the toolbar allows you to show the output from either the debug or the
build process. It is also possible to save the output to a text file by clicking
anywhere inside the Output window and then using the keyboard shortcut
Ctrl+S.

Break Points (Ctrl+Alt+B)
To insert a new break point, use the keyboard shortcut Ctrl+B. Compared
with its older sibling in Classic VB, the break points feature has been
improved significantly in VS.NET. First, VS.NET provides a Breakpoints
window that displays the location and settings for all break points in the
solution, as shown in Figure 24-15.

Second, we can set conditions for a break point by right-clicking on that
break point and selecting Condition... from the shortcut menu. In Figure
24-15 we set a condition for the first break point. When the break point is
reached, this condition is evaluated to determine whether it is true or false.

FIGURE 24-15 The Breakpoints window

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 849

If the condition is true the break point is triggered; otherwise, the break
point is skipped.

Third, we can add a hit count for a break point by right-clicking on
that break point and selecting Hit Count... from the shortcut menu. This
provides us with an additional parameter to control whether code execu-
tion should stop at break points. Figure 24-16 shows us defining a hit count
for our first break point in the Breakpoint Hit Count dialog.

The Call Stack (Ctrl+L)
The Call Stack window displays the method calls that are currently on the
stack. It is a useful debugging tool because it allows you to see the specif-
ic execution path that led to the current position in your code.

The Quick Watch and Watch Windows
Once our code is in break mode we have access to the Quick Watch and
Watch windows. The Watch window, accessed by selecting the Debug >
Windows > Watch menu while in break mode, provides four different
Watch tabs. It is easy to add watches. You can drag and drop an object or
expression onto the Watch window or select the object or expression in the
code editor, right-click on it, and choose Add Watch from the shortcut
menu. To delete a watch, select it in the Watch window, right-click on it,
and choose Delete Watch from the shortcut menu. You can add as many dif-
ferent watches as you want. To access one of the Watch windows during a
debugging session, press Ctrl+Alt+W followed by a digit between 1 and 4.

Quick Watch works the same way as the Watch window except that it
can only handle one watch variable at the time.

Exceptions (Ctrl+Alt+E)
The Exceptions dialog is an advanced debugging tool that allows us to
specify what types of exceptions we want VS.NET to throw during debugging.

FIGURE 24-16 Defining a break point hit count

850 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 850

Debugging 851

24.
EXCEL

AN
D

VB.NET

The debugger stops whenever the selected type of exception occurs.
Figure 24-17 shows this dialog.

The Thrown option causes the debugger to break unconditionally when
the specified exception type occurs. If we check the Thrown option for the
Common Language Runtime Exceptions, we ensure that when a
Common Language Runtime exception is thrown it breaks into the debug-
ger, overriding any custom SEH we may have defined. The User-unhandled
option causes the debugger to stop for the specified exception type only if
no error handler is active when the exception occurs.

We can also configure specific exception types below the top-level
namespaces by clicking on the plus sign (+) to the left of a namespace.
This expands the namespace node to show all exceptions within the name-
space that can be configured.

Conditional Compilation Constants
Chapter 16 introduced the concept of conditional compilation constants,
so in this section we only cover conditional compilation topics that are spe-
cific to the .NET platform.

VB.NET provides several predefined conditional compilation con-
stants, including the Boolean constant DEBUG. When DEBUG is set to
true we have a debug build, and when it is set to false we have a release
build. When compiling a release build we do not need to manually remove
any debugging information. VS.NET handles this automatically when the
DEBUG constant is set to false. Debugging information is also ignored
when running a release build in the VS IDE. To compile a release build we

FIGURE 24-17 The Exceptions dialog

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 851

need to use the Configuration Manager. Verify that the Configuration
Manager is available in the following manner:

1. Select the Tools > Options... menu from the VS IDE.
2. Select Projects and Solutions from the tree view in the Options

dialog.
3. Check the Show advanced build configurations check box.
4. Click the OK button to close the Options dialog.

We can then access the Configuration Manager by selecting Build >
Configuration Manager... from the VS IDE menu, as shown in Figure 24-
18. By changing the configuration we can switch between debug and the
release builds. We can also use the Configuration Manager to specify
which platform to target.

We can execute code conditionally based on the value of the DEBUG con-
stant as shown in Listing 24-23.

Listing 24-23 Using DEBUG in Code

#If DEBUG then

‘Do some evaluation.

#End If

FIGURE 24-18 The Configuration Manager

852 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 852

Useful Development Tools 853

24.
EXCEL

AN
D

VB.NET

Using Assertions
The Debug.Assert method is used exactly the same way in the VS IDE as it
is in Classic VB. Chapter 16 already covered the use of this method, so we
do not discuss it further here.

Useful Development Tools

The VS IDE ships with a large number of useful development tools.
Although it is beyond the scope of this chapter to discuss them all, we
cover some of the most important tools in this section.

Code Region
The Code Region feature allows us to expand and collapse different sec-
tions, or regions, in our code modules. We can use this feature to create
logical groups of methods that expand and collapse together. We can then
collapse all regions in a code module that are unrelated to the one we are
working with.

To create a region, we enter #Region followed by the name of the region
in double quotes on a blank line above where the region should start. We
then move to the next blank line below the code we want included in the
region and enter #End Region (or select it from the IntelliSense list when
we are prompted). Listing 24-24 shows an example of a code region.

Listing 24-24 A Code Region

#Region “Export data to Excel”

‘Many lines of code here

#End Region

The Code Snippets Manager (Ctrl+K Ctrl+B)
Code snippets are small, reusable pieces of code. They are stored in a
snippet library and managed using the Code Snippets Manager. The VS
IDE includes a large number of code snippets already written and stored
in the Code Snippets Manager. Code snippets are particularly easy to use
because they are exposed as part of the VS IDE IntelliSense feature. Code
snippets are stored in text files in XML format. This makes it easy to use
them on other computers as well as to share them with other developers.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 853

You can insert a code snippet into your code module in the following man-
ner:

1. Place the cursor at the position where you want to insert the code
snippet.

2. Right-click and select Insert Snippet... from the shortcut menu.
3. Select the desired category.
4. Select the desired code snippet.

Figure 24-19 shows the Insert Snippet command in action.

Instead of using the menu to insert code snippets, we can use code short-
cuts. First we need to find out which code shortcuts are available in the
Code Snippets Manager. The Code Snippets Manager can be accessed
from the Tools > Code Snippets Manager... menu. Next we type the short-
cut text, for instance ForEach, in the code editor and press the Tab key to
execute it. Listing 24-25 first shows the shortcut text and then the result
after we press the Tab key.

Listing 24-25 Using a Shortcut to Insert a Code Snippet

’The shortcut.

ForEach

‘The result.

For Each Item As String In CollectionObject

Next Item

As we can see in Listing 24-25, we need to fix the code snippet before it
can be properly used. On first consideration it may seem like too much

FIGURE 24-19 Inserting a code snippet

854 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 854

Automating Excel 855

24.
EXCEL

AN
D

VB.NET

effort to remember all the shortcuts as well as correct the code that is actu-
ally inserted into the code editor. However, the code snippets are com-
pletely customizable, so it is worth your effort to spend some time and
make the changes required to suit your needs.

The built-in Code Snippets tool is rather primitive and doesn’t provide
a very user-friendly interface. If you find yourself working extensively with
code snippets the free Snippet Editor may be a better tool. As of this
writing, it is available at www.codeplex.com/SnippetEditor.

Insert File as Text
Insert File as Text is not a standalone tool but rather a built-in function
of the VS IDE. It can be used to import code from plain text files. To dis-
play the Insert File dialog select Edit > Insert File as Text... from the menu.
The default file extension is *.vb so we need to change the file extension to
*.txt before we can select a text file. The code in the selected text file is
imported into the active code module at the current cursor position. Using
text files to manage complete and reusable class modules, standard mod-
ules, and methods requires only a simple text editor, making it a portable,
light-weight solution.

Task List (Ctrl+Alt+K)
The Task List is a simple but handy tool for managing the To-Do list for
a solution. Using the only button on its toolbar we can create different
tasks and set flags indicating their priority. By right-clicking on the list we
can also sort, copy, and delete tasks.

Automating Excel

At the most fundamental level, automating Excel from .NET solutions
does not differ from automating Excel from Classic VB. What must be
taken into consideration is that the .NET Framework cannot communicate
directly with Excel because of differences between .NET technology and
the COM technology Excel is built on. It is necessary to create a bridge
between these two technologies for us to be able to automate Excel from
the .NET platform. The bridge between .NET and COM is mostly pro-
vided by features contained in two .NET Framework namespaces:
System.Runtime.InteropServices and System.EnterpriseServices.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 855

However, there are additional components required to allow interoper-
ability that we need to discuss further.

Primary Interop Assembly (PIA)
When we set a reference to a COM type library in a .NET solution, the VS
IDE automatically creates a default Interop Assembly (IA). The auto-
generated IA is a .NET-based assembly that acts as a wrapper for the COM
type library. The IA provides us with basic access to the COM type library,
and it contains type definitions (as metadata) of types implemented by
COM. A Primary Interop Assembly (PIA) is a prebuilt, vendor-supplied
assembly. The difference between an IA and a PIA is more or less seman-
tic.

Microsoft has released PIAs for all Excel versions beginning with Excel
2002 as part of the Microsoft Office PIAs. The PIAs have strong names
and are digitally signed by Microsoft. The use of strong names makes it
possible to install PIAs in the Global Assembly Cache (GAC). The GAC
is a machinewide .NET assembly cache for the CLR. Assemblies that
should have only one version on the system should be installed in the
GAC.

One important point to understand is that only one version of the
PIAs can be used on a system, although multiple versions can be
installed side by side in the GAC. In addition, PIAs are registered in the
Windows registry. If multiple versions of the PIAs are installed, only the
latest version is registered, and the entries for any previous version are
overwritten.

When we set a reference to Excel in a .NET solution the VS IDE
reads the registry and adds a reference to the PIA instead of generating
a new IA. This guarantees that we always use the PIAs if they are avail-
able. As a practical matter, when we are automating Excel from .NET we
are always developing against the PIA and not the Excel COM type
library.

The PIAs are optimized for Excel and you should always use the offi-
cial Microsoft versions. The PIAs are also Excel version-specific. This
means you cannot automate Excel 2002 using the PIA for Excel 2003.
Therefore, you must be sure the correct version of the PIA is installed on
your development computer. Whether or not the PIA is already installed
on a computer depends on the following:

n For Excel 2002 on Windows XP or Windows Vista you need to man-
ually download and install the redistributable PIA package from the

856 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 856

Automating Excel 857

24.
EXCEL

AN
D

VB.NET

Microsoft Web site. If you run Windows XP, then the .NET
Framework must be installed prior to installing the PIA package.

n For Excel 2003 or Excel 2007 on Windows XP, if Microsoft Office
has been installed before the .NET Framework, then you must
install the PIA package manually. You can either download the
redistributable PIA package from the Microsoft Web site or install
it from the Office CD.

n For Excel 2003 or Excel 2007 on Windows Vista you do not need to
take any action at all. Because version 3.0 of the .NET Framework
is shipped with Windows Vista, the PIAs are automatically installed
when Office is installed.

Since no official PIA exists for Excel 2000, we must compile our own IA
using the TlbImp.exe tool that is shipped as part of the .NET Framework
SDK. It takes the Excel9.olb file as its input and generates a .NET assem-
bly as its output. When automating Excel from .NET you should always
develop against the earliest versions of the PIA and Excel that you plan to
target and the earliest version of the .NET Framework you intend to use.

You need to be aware of the code execution overhead for all kinds of
.NET solutions, especially when it comes to interaction between .NET and
COM. Compared with Classic VB, .NET solutions require more compo-
nents and therefore require more overhead to run. These components
include

n The COM interop layer (PIA)
n The CLR
n The .NET Framework

As we see in the next section, there are additional aspects we need to con-
sider to maintain acceptable performance for .NET solutions that auto-
mate Excel. If high performance is critical to your solution you may even
consider using Classic VB if it is available and is an acceptable development
platform.

Using Excel Objects in .NET Solutions
Create a Windows Forms solution and name it “Automate Excel.” Add a
button to the form and name it “Automate Excel.” Next, add a reference
to the Excel 2003 PIA or later. Choose Project > Add Reference... from the
VS IDE menu to display the Add Reference dialog. Select the COM tab

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 857

and scroll down to locate the Microsoft Excel 11.0 Object Library as shown
in Figure 24-20. The reference is added when you close the dialog by click-
ing the OK button.

Choose Project > Automate Excel Properties... from the VS IDE menu.
Select the References tab, and you see that three new Excel-related refer-
ences have been added: the Excel Object Library, the Office Object
Library, and the VBA Extensibility Object Library. Figure 24-21 shows the
current list of references in the solution.

The System references are added by default. These give us access to
the most commonly used .NET Framework class libraries. The imported
namespaces are automatically included in all new .NET solutions. These
are globally available in a solution. Open the Windows Form class module.
When working with namespaces like Excel it is a good development prac-
tice to create a namespace alias for it at the top of the code module.
We also add another Imports statement that is required as shown in Listing
24-26.

Listing 24-26 Namespace Alias and Imports Statements

’Namespace alias for Excel.

Imports Excel = Microsoft.Office.Interop.Excel

‘To release COM objects and catch COM errors.

Imports System.Runtime.InteropServices

FIGURE 24-20 Adding a reference to the Excel Object Library

858 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 858

Automating Excel 859

24.
EXCEL

AN
D

VB.NET

FIGURE 24-21 References in the automate Excel solution

Declaring and instantiating some Excel COM objects, like Workbook and
Range objects, requires that we cast the object reference to the precise
type using the CType function. This is because the Option Strict setting
prevents us from using code that might fail at runtime due to type conver-
sion errors. The VS IDE actually helps us with this task by visually mark-
ing the objects that need to be cast.

Next, add a Click event handler for the button. Listing 24-27 shows the
code required to get the Excel automation started. Put this code in the but-
ton’s Click event. As you can see, we implemented an SEH but intention-
ally left out any exception handling code. At this stage we also did not add
the code required to release any of the Excel objects we used.

Listing 24-27 Declare and Instantiate Excel Objects

Dim xlApp As Excel.Application = Nothing

Dim xlWkbNew As Excel.Workbook = Nothing

Dim xlWksMain As Excel.Worksheet = Nothing

Dim xlRngData As Excel.Range = Nothing

Dim sData() As String = {“Hello”, “World”, “!”}

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 859

Try

‘Instantiate a new Excel session.

xlApp = New Excel.Application

‘Add a new workbook.

xlWkbNew = xlApp.Workbooks.Add

‘Reference the first worksheet in the workbook.

xlWksMain = CType(xlWkbNew.Worksheets(Index:=1), _

Excel.Worksheet)

‘Reference the range to which we will write some

data to.

xlRngData = CType(xlWksMain.Range(“A1:C1”), _

Excel.Range)

‘Write the data to the range.

xlRngData.Value = sData

‘Save the workbook.

xlWkbNew.SaveAs(Filename:=”c:\Test\New.xls”)

‘Make Excel visible for the user.

With xlApp

.UserControl = True

.Visible = True

End With

Catch COMex As COMException

Catch ex As Exception

End Try

As shown in Listing 24-27, we must explicitly use the Value property of the
Excel Range object in VB.NET. This is because VB.NET does not recog-
nize default properties.

Whenever Excel objects are instantiated at runtime the CLR creates
so called Runtime Callable Wrapper (RCW) for each underlying
COM object in the memory. It is the group of RCWs that constitute the

860 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 860

Automating Excel 861

24.
EXCEL

AN
D

VB.NET

runtime proxies, or bridges, between a .NET solution and the COM type
libraries it references. This is important to keep in mind because the
more Excel COM objects we use, the more memory our solution con-
sumes at runtime. It is a good development practice to clean up the RCW
reference counts so we don’t end up with a large number orphaned
RCWs.

Let’s take a closer look at the code in Listing 24-27. Initially it looks like
we are only using four objects: the Application object, the Workbook
object, the Worksheet object, and the Range object. But we indirectly ref-
erence the Workbooks collection, the Worksheets collection, and the
Range collection, so we actually use seven objects. The objects used indi-
rectly are out of our control but must be managed anyway.

On the .NET platform the Garbage Collector (GC), is responsi-
ble for all memory management. The GC uses a managed memory
scheme that periodically traces live references. When the trace is com-
plete, all unreachable objects are released, and the GC reclaims the
memory they previously used. The GC operates in a nondeterministic
manner, so we never know exactly when it will perform its memory
management tasks.

For pure .NET solutions this is not a problem, but it becomes an issue
when trying to release COM objects properly. When releasing Excel
objects we must be sure to release all the objects we have used. Otherwise,
we may end up in a situation where Excel remains in memory and contin-
ues to consume resources even after our application has ended.

The first step in a practical solution is to explicitly call the GC from our
.NET code. Calling the GC is a time-consuming process, but one that may
be necessary when automating Excel because it is the only way to release
all the Excel COM objects referenced indirectly. Each RCW has a
finalizer that is responsible for releasing its COM object from memory.
This finalizer needs to be called twice to fully remove the COM object
from memory. Therefore, if we call the GC twice it releases our three indi-
rectly referenced Excel objects.

The second step in a practical solution is to call the
Marshal.FinalReleaseComObject method for every Excel COM object.
Note that Excel objects must be released in the reverse order in which
they were created, with the Excel Application object released last. Listing
24-28 shows the code in our solution used to release all the Excel COM
objects. This should normally be performed when we are closing the
application.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 861

Listing 24-28 Releasing Excel COM Objects with a Function

‘In the calling sub procedure.

‘...

Finally

‘Calling the Garbage Collector twice.

GC.Collect()

GC.WaitForPendingFinalizers()

GC.Collect()

GC.WaitForPendingFinalizers()

‘Releasing the Excel objects.

ReleaseCOMObject(xlRngData)

ReleaseCOMObject(xlWksMain)

ReleaseCOMObject(xlWkbNew)

ReleaseCOMObject(xlApp)

End Try

End Sub

Private Sub ReleaseCOMObject(ByVal oxlObject As Object)

Try

Marshal.ReleaseComObject(oxlObject)

oxlObject = Nothing

Catch ex As Exception

oxlObject = Nothing

End Try

End Sub

Note how we use the custom ReleaseCOMObject function to release the
Excel objects and set them to Nothing. This example also shows why the
Finally block is so useful; it ensures that the code required to clean up our
Excel objects will always run.

The Automate Excel example can be found on the companion CD in
\Concepts\Ch24 - Excel & VB.NET\Automate Excel folder. If you just want
to run the example, the Automate Excel executable file can be found in the
\Concepts\Ch24 - Excel & VB.NET\Excel Automate\Excel Automate\bin\
Debug folder on the CD.

862 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 862

Resources in .NET Solutions 863

24.
EXCEL

AN
D

VB.NET

Using Late Binding
Whenever possible, we should use early binding and declare all variables
as specific types. The reasons for this are simple:

n Our .NET solutions run faster because it is not necessary to perform
type conversion on any variables.

n The compiler can detect and display exceptions and therefore pre-
vent runtime exceptions.

n We get IntelliSense support and dynamic help during the develop-
ment process.

Unfortunately, it is common for developers to have the latest version of an
application such as Microsoft Office while end users have earlier versions.
However, given access to desktop virtualization software such as WMware
(commercial software) and Microsoft Virtual PC (free tool) it is now
much easier for developers to use the same versions of software as the end
users they develop for. This makes it possible for developers to use early
binding in their applications.

Resources in .NET Solutions

On the .NET platform we can add images, icons, strings, and text files as
resources to our solutions. To add resources we select the Resources tab
from the .NET solution Properties window and click the Add Resource
button on its toolbar. All resources associated with a solution become part
of the EXE or DLL file upon compilation of the solution.

NOTE VS 2008 ships with a large group of images and icons. These are con-
tained in the file VS2008ImageLibrary.zip that is located in the folder \Program
Files\Microsoft Visual Studio 9.0\Common7\VS2008ImageLibrary\1033.

To work with resources in code, we use My.Resources together with
the name of the resource file. Listing 24-29 shows how we use an icon
resource in code.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 863

Listing 24-29 Associate an Icon Resource File to a Windows Form

Me.Icon = My.Resources.PetrasIcon

In this example, the Me keyword refers to a Windows Form, and
PetrasIcon refers to an icon resource file. The My keyword refers to the
My namespace that the .NET Framework makes available for all VB.NET
solutions. This namespace exposes seven objects that allow us to work with
various resources and features. Table 24-3 lists the My namespace objects
along with the purpose of each.

Retrieving Data with ADO.NET

Despite the similarity in the name, ADO.NET is something totally differ-
ent from classic ADO on the unmanaged platform. For instance, it does
not include a Recordset object, and the Excel CopyFromRecordset method
is not supported. This is covered in more detail in Chapter 25, “Writing
Managed COM Add-ins with VB.NET.” Another major difference is that
ADO.NET has strong support for XML data representation. VS 2008 ships
with version 3.5 of the ADO.NET class library.

Table 24-3 Objects in the My Namespace

Object Purpose

My.Application Provides information about the application such as path, assembly
information, and environment variables.

My.Computer Provides features for manipulating computer components such as
audio, the clock, the keyboard, the file system, and so on.

My.Forms Provides access to all Windows Forms in the solution.

My.Resources Provides access to resources used by the solution.

My.Settings Allows reading and storing application configuration settings.

My.User Provides access to information about the current user, including
whether or not the user belongs to a special user group.

My.WebServices Provides features for creating and accessing a single instance of each
XML Web service referenced by the solution.

864 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 864

Retrieving Data with ADO.NET 865

24.
EXCEL

AN
D

VB.NET

ADO.NET is one of the default namespaces included in all Windows
Forms based solutions, so to use it we just need to add Imports statements
to the top of code modules from which ADO.NET will be called. However,
to complicate things ADO.NET can be used in two different ways:
connected mode and disconnected mode.

Before we can examine these two different approaches we need to first
discuss .NET Data Providers. Data providers are used to connect to data-
bases, execute commands, and provide us with the results. Each database, like
SQL Server, Oracle, MySQL, and so on requires its own unique data provider.
Some data providers are available by default in the .NET Framework, includ-
ing SQL Server, Oracle, and OLE DB. Other data providers can be obtained
from specific database vendors. For Microsoft Access and other databases
that support ODBC, the OLE DB Data Provider can be used.

Connected mode means that we work with an open connection to the
database. In this mode we explicitly use command objects and the
DataReader object. A DataReader object retrieves a read-only, forward-
only stream of data from a database. It can also handle multiple result sets.
To do this, the connection must be open during the whole data retrieval
process. Connected mode provides a performance advantage if we need to
work with database records one at a time because the DataReader object
retrieves and stores them in memory. However, the drawback is that con-
nected mode creates more network traffic and requires having an active
connection open during the whole database operation.

In Listing 24-30, we use a SQL Server database and therefore we
import the namespace System.Data.SqlClient, which gives us access to
the .NET Data Provider for SQL Server. We also use the ADO.NET class
library and therefore we import the namespace System.Data.

Listing 24-30 Using a DataReader Object

’At the top of the code module.

Imports System.Data

Imports System.Data.SqlClient

Friend Function Retrieve_Data_With_DataReader() As ArrayList

‘SQL query in use.

Const sSqlQuery As String = _

“SELECT CompanyName AS Company “ & _

“FROM Customers “ & _

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 865

“ORDER BY CompanyName;”

‘Connection string in use.

Const sConnection As String = _

“Data Source=PED\SQLEXPRESS;” & _

“Initial Catalog=Northwind;” & _

“Integrated Security=True”

‘Declare and initialize the connection.

Dim sqlCon As New SqlConnection(connectionString:= _

sConnection)

‘Declare and initialize the command.

Dim sqlCmd As New SqlCommand(cmdText:=sSqlQuery, _

connection:=sqlCon)

‘Define the command type.

sqlCmd.CommandType = CommandType.Text

‘Explicitly open the connection.

sqlCon.Open()

‘Populate the DataReader with data and

‘explicit close the connection.

Dim sqlDataReader As SqlDataReader = _

sqlCmd.ExecuteReader(behavior:= _

CommandBehavior.CloseConnection)

‘Variable for keeping track of number of rows in the

‘DataReader.

Dim iRecordCounter As Integer = Nothing

‘Get the number of columns in the DataReader.

Dim iColumnsCount As Integer = sqlDataReader.FieldCount

‘Declare and instantiate the ArrayList.

Dim DataArrLst As New ArrayList

‘Check to see that it has at least one

‘record included.

If sqlDataReader.HasRows Then

‘Iterate through the collection of records.

While sqlDataReader.Read

For iRecordCounter = 0 To iColumnsCount - 1

866 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 866

Retrieving Data with ADO.NET 867

24.
EXCEL

AN
D

VB.NET

‘Add data to the ArrayList’s variable.

DataArrLst.Add(sqlDataReader.Item _

(iRecordCounter).ToString())

Next iRecordCounter

End While

End If

‘Clean up by disposing objects, closing and

‘releasing variables.

sqlCmd.Dispose()

sqlCmd = Nothing

sqlDataReader.Close()

sqlDataReader = Nothing

sqlCon.Close()

sqlCon.Dispose()

sqlCon = Nothing

‘Send the list to the calling method.

Return DataArrLst

End Function

We first create a SqlConnection object and then a SqlCommand object.
Next we explicitly open the connection, create the DataReader object, and
iterate through the collection of records in the DataReader object by using
its Read method. Within the loop we populate an ArrayList object with the
data from the DataReader object. Finally, we close and clean up the objects
we’ve used and return the data in the ArrayList to the calling method. The
Northwind database used in this example can be found on the companion
CD in \Applications\Ch24 - Excel & VB.NET \Northwind.

When working in disconnected mode we make use of the
DataAdapter, DataSet, and DataTable objects, which are supported by all
.NET Data Providers. A DataAdapter acquires the data from the database
and populates the DataTable(s) in a DataSet. The DataAdapter object
includes commands to automatically connect to and disconnect from the
database. It also includes commands to select, insert, update, and delete
data. The DataAdapter object runs these commands automatically. The
DataSet is an in-memory representation of the data, and like the
DataReader object it can handle multiple SQL queries at the same time.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 867

The advantages of using disconnected mode are that it creates less net-
work traffic because it acquires the data in one go, and it does not require
an open connection to the database once the data has been retrieved. It
also allows us to first update the retrieved data and then return the updat-
ed data to the database.

Listing 24-31 shows a complete function, including SEH, which first
creates the Connection object together with the DataAdapter object. It
then creates and initializes a new DataSet. Next it initializes the
DataAdapter object, which automatically establishes a connection, retrieves
the data, and closes the connection. The DataSet is filled with the retrieved
data and finally the function returns the first DataTable in the DataSet.

Listing 24-31 Using DataAdapter and DataSet Objects

’On top of the code module.

Imports System.Data

Imports System.Data.SqlClient

Friend Function Retrieve_Data_With_DataAdapter() As DataTable

‘SQL query in use.

Const sSqlQuery As String = _

“SELECT CompanyName AS Company “ & _

“FROM Customers “ & _

“ORDER BY CompanyName;”

‘Connection string in use.

Const sConnection As String = _

“Data Source=PED\SQLEXPRESS;” & _

“Initial Catalog=Northwind;” & _

“Integrated Security=True”

‘Declare the connection variable.

Dim SqlCon As SqlConnection = Nothing

‘Declare the DataAdapter variable.

Dim SqlAdp As SqlDataAdapter = Nothing

‘Declare and initialize a new empty DataSet.

Dim SqlDataSet As New DataSet

Try

‘Initialize the connection.

SqlCon = New SqlConnection(connectionString:= _

868 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 868

Retrieving Data with ADO.NET 869

24.
EXCEL

AN
D

VB.NET

sConnection)

‘Initialize the DataAdapter.

SqlAdp = New SqlDataAdapter(selectCommandText:= _

sSqlQuery, _

selectConnection:= _

SqlCon)

‘Fill the DataSet.

SqlAdp.Fill(dataSet:=SqlDataSet, srcTable:=”PED”)

‘Return the datatable.

Return SqlDataSet.Tables(0)

Catch Sqlex As SqlException

‘Exception handling for the communication with

‘the SQL Server Database.

‘Tell it to the calling method.

Return Nothing

Finally

‘Releases all resources the variable has consumed from

‘the memory.

SqlDataSet.Dispose()

‘Release the reference the variable holds and

‘prepare it to be collected by the Garbage Collector

‘(GC) when it comes around.

SqlDataSet = Nothing

SqlCon.Dispose()

SqlCon = Nothing

SqlAdp.Dispose()

SqlAdp = Nothing

End Try

End Function

The function returns a DataTable object from the ADO.NET class, but we
do not need to cast it into a DataTable object from the DataSet class before
returning it. The exception handler catches any exceptions that occur in

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 869

the SQL Server Data Provider. In the Finally block we dispose all object
variables and set them to nothing. A working example of this solution can
be found on the companion CD in \Concepts\Ch24 - Excel &
VB.NET\Northwind folder.

ADO.NET may be a new technology for developers who are working
with the .NET platform for the first time. But for Microsoft, the latest tech-
nology is .NET Language Integrated Query (LINQ), which is part of
the .NET Framework 3.5 and was released with VS 2008. LINQ is a set of
.NET technologies that provide built-in language querying functionality
similar to SQL for accessing data from any data source. Instead of using
string expressions that represent SQL queries, we can use a rich SQL-like
syntax directly in our VB.NET code to query databases, collections of
objects, XML documents, and more.

The future will tell us more about how well LINQ will succeed.
Developers who are coming from classic ADO are more likely to first adopt
ADO.NET and later perhaps also begin to use LINQ.

Further Reading

When it comes to the .NET Framework, VB.NET, and ADO.NET we
have only scratched the surface. These technologies are all book-length
topics in their own right. The following books are sources that we have
found to be useful for a general introduction to VB.NET and to
ADO.NET.

Programming Microsoft Visual Basic .NET Version
2003
Authored by Francesco Balena
ISBN# 0735620598—Microsoft Press
Unfortunately, this book has not been updated since VB.NET 2003 was
released. However, it provides an excellent introduction to the .NET
Framework and to VB.NET, as well as to other related technologies such
as ADO.NET. It explicitly targets Classic VB developers who are moving
to the .NET platform.

Visual Basic 2008 Programmer’s Reference
Authored by Rod Stephens
ISBN# 0470182628—Wrox

870 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 870

Q&A Forums 871

24.
EXCEL

AN
D

VB.NET

This book offers a light introduction to VB.NET that explicitly targets
beginning to intermediate level developers. This is a practical book about
the .NET Framework, VS IDE, and VB.NET, written well in plain
English. The only thing that may be annoying is that some screen shots are
oversized. Hopefully this will be corrected in later editions of the book.

Additional Development Tools

The authors have no financial interest in these tools and are not connect-
ed to their vendors. The recommendations are based on our own daily use
of these tools as .NET developers.

MZ-Tools
MZ-Tools 6.0 is an add-in to the VS IDE. It works with all current versions
of VS.NET except for the Express edition. It adds many tools and func-
tions to the VS IDE that are designed to simplify development work and
increase productivity. For more information see www.mztools.com.

VSNETCodePrint
VSNETCodePrint 2008 is an add-in to the VS IDE that helps developers
document their solutions. With this tool we can print, preview, and export
a complete solution, selected projects, project items, classes, modules, and
procedures in several file formats. It can save you a significant amount of
time when you need to document solutions and inspect code. For more
information see www.starprint2000.com.

It should be noted that MZ-Tools provides features to generate docu-
mentation using either HTML or XML file formats that overlap the fea-
tures in VSNETCodePrint to some degree but are less advanced.

Q&A Forums

There are many general public VB.NET Q&A forums, but the Microsoft
MSDN section for VB.NET is one of the best at http://forums.msdn.
microsoft.com/en-US/tag/visualbasic/forums/. The VB.NET section at
Xtreme VB Talk is also good, and it includes a subforum for .NET Office
automation at www.xtremevbtalk.com/forumdisplay.php?f=97.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 871

Practical Example—PETRAS Report Tool .NET

PETRAS Report Tool .NET is a practical case study that demonstrates a
more complex VB.NET application than is possible to cover in a single
chapter. In Chapter 25, the tool is converted into a managed COM add-in
for Excel. The tool is a standalone, fully functional reporting solution. It
retrieves data from a SQL Server database (created in Chapter 19,
“Programming with Access and SQL Server”) based on the user selection
in the main Windows Form. It then populates predefined Excel report
templates with the data. It can export reports either to Excel or to XML
files. The solution can be found on the companion CD in
\Applications\Ch24 - Excel & VB.NET\PETRAS Report Tool.NET. Please
read the Read Me First.txt file located in the \Applications\Ch24 - Excel &
VB.NET\ folder. You will find it helpful to open this solution in the VB IDE
so that you can reference it while reading this section.

When the tool starts up, it first tries to establish a connection to the
database. A custom Windows Form is displayed while the tool is trying to
connect. If the connection attempt is successful, the main Windows Form
shown in Figure 24-22 is displayed. If the connection attempt fails, an
error message is displayed.

Use the following steps to create a report in the main form:

FIGURE 24-22 PETRAS Report Tool .NET user interface

872 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 872

Practical Example—PETRAS Report Tool .NET 873

24.
EXCEL

AN
D

VB.NET

1. Select a Client.
2. Select a Project.
3. Select the reporting time period by entering a Start date and an

End date.
4. Uncheck or keep the fields Activities and Consultants.
5. Click on the Create Report button to preview the report in the

DataGrid.
6. Click the appropriate button to export to an Excel report or to an

XML file.
7. If export to Excel is selected, Excel is launched and a copy of one

of the four predefined report templates is created.
8. If export to XML is selected, a Save File dialog is displayed so you can

specify a filename and location where the XML file should be saved.
9. If the export is successful, the selections you made become the

new default values for all controls on the Windows Form. It is pos-
sible to clear these settings by selecting the Clear Settings button.

10. To close the Windows Form, click the Close button.

The .NET Solution
Although we only use one main Windows Form, our .NET solution
includes some additional modules and files. Table 24-4 shows a summary
of what the solution contains.

Table 24-4 Contents for the PETRAS Report Tool.NET Solution

Module Name Type and Function

app.config XML configuration file containing the connection string

frmConnecting.vb Windows Form displayed while connecting to the database

frmMain.vb Windows Form that is the main form for the solution

MCommonFunctions.vb Standard module containing general functions for the tool

MDataReports.vb Standard module containing all database functions

MExportExcel.vb Standard module containing all the functions required to
export data to Excel

MExportXML.vb Standard module containing all the functions required to
export data to XML files

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 873

As you can see in Table 24-4, the solution does not include any class mod-
ules. Creating well-designed class modules is covered in Chapter 25. In
addition to the components shown in Table 24-4, the solution uses four dif-
ferent Excel report templates. Depending on the user selections, one of
them is used to create the requested report:

n PETRAS Report Activities.xlt—Used when only the Activities
control is checked

n PETRAS Report Activities Consultants.xlt—Used when both
the Activities and Consultants controls are checked

n PETRAS Report Consultants.xlt—Used when only the
Consultants control is checked

n PETRAS Report Summary.xlt—Used when neither the Activities
nor the Consultants controls are unchecked

If we click the Show All Files button in the Solution Explorer toolbar, it dis-
plays an expanded tree view. If we then expand the References item in the
tree view we can see all references for the solution, as shown in Figure 24-
23. Most hidden files are system files that we rarely need to work with, but
it’s a good exercise to explore all the files included in the solution.

In any non-trivial real-world application where we initially load a
Windows Form, we usually need to ensure that certain conditions are met
before loading it. In VB.NET we can use the same approach as with
Classic VB. We create a Main subroutine in a standard code module that is
used as the startup subroutine.

But in VB.NET, we need to change some additional settings in the
solution before this will work correctly. After creating the new Windows
Forms application, open the solution Properties window, and select the
Application tab. Figure 24-24 shows the original startup settings for the
PETRAS Report Tool.NET solution.

We add a standard code module to the solution that we name
MStartup.vb. We add the Main subroutine and its code to this module, as
shown in Listing 24-32.

Table 24-4 Contents for the PETRAS Report Tool.NET Solution

Module Name Type and Function

MSolutions Enumerations
Variables.vb

Standard module containing all the enumerations used in
the solution

MStartUp.vb Standard module containing the Main procedure for the
solution

874 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 874

Practical Example—PETRAS Report Tool .NET 875

24.
EXCEL

AN
D

VB.NET

FIGURE 24-23 The tree view in Solution Explorer

FIGURE 24-24 Default settings for the solution

Listing 24-32 Code for the Main Subroutine

Sub Main()

‘Enable Windows XP’s style.

Application.EnableVisualStyles()

‘Declare and instantiate the Windows Form.

Dim frm As New frmMain

‘Set the position of the main Windows Form.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 875

frm.StartPosition = FormStartPosition.CenterScreen

‘Show the main Windows Form.

Application.Run(mainForm:=frm)

‘Releases all resources the variable has consumed from

‘the memory.

frm.Dispose()

‘Release the reference the variable holds and prepare it

‘to be collected by the Garbage Collector when it

‘comes around.

frm = Nothing

End Sub

Now we return to the Application tab of the solution Properties window,
where we uncheck the option Enable application framework and change
the Startup object to the Main subroutine as shown in Figure 24-25.

Unchecking the Enable application framework option implicitly removes
the option to use Windows XP styles. Therefore, we need enable this
option manually in the startup code, which is done in the first line of our
Main procedure in Listing 24-32.

The Main subroutine is also a good place to put code to position the
Windows Form before it is loaded. The Main subroutine is also an accept-
able place to put code for connecting to a database, but in the PETRAS
Report Tool.NET we use a different approach that is covered soon. When
the user closes the main Windows Form we dispose its class and set the
variable to nothing.

Windows Forms Extender Providers
The .NET Framework provides so-called extender providers to
Windows Forms. These components can only be used with visual controls.

FIGURE 24-25 Modified startup settings

876 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 876

Practical Example—PETRAS Report Tool .NET 877

24.
EXCEL

AN
D

VB.NET

By adding them to our Windows Forms we get additional properties to
work with. Extender providers are added to a Windows Form in exactly the
same way as regular controls. However, the extender providers appear in
the form’s Component Tray rather than on the surface of the form itself.

Figure 24-26 shows the Component Tray for the main form of the
PETRAS Report Tool.NET. The components used are the
ErrorProvider, HelpProvider, and ToolTip components, for the main
Windows Form, the BackgroundWorker component, which we cover
later, and the SaveFileDialog component that was introduced earlier in the
chapter.

The first extender provider in use is the ErrorProvider, which provides us
with the option to set validation errors. It can be used with one or more
controls on the Windows Form as each of them have the Validating event.

When a control’s input is not valid the ErrorProvider places an error
icon next to the control and displays an error message when the user hov-
ers the mouse over the icon. Listing 24-33 shows how this is implemented
in the PETRAS Report Tool.NET solution. As the code shows, we can cre-
ate a single event that hooks the Validating events of all the targeted
controls on the form.

Listing 24-33 The Validating Event Subroutine for Several Controls

Private Sub Client_Project_Validating(ByVal sender As Object, _

ByVal e As System.ComponentModel.CancelEventArgs) _

Handles cboClients.Validating, _

cboProjects.Validating

Const sMESSAGECLIENTERROR As String = _

“You need to select a client.”

Const sMESSAGEPROJECTERROR As String = _

“You need to select a project.”

Dim Ctrl As Control = CType(sender, Control)

If Ctrl.Text = ““ Then

FIGURE 24-26 Extender providers in the PETRAS Report Tool.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 877

Select Case Ctrl.Name

Case “cboClients”

Me.ErrorProvider1.SetError(control:=Ctrl, _

value:=sMESSAGECLIENTERROR)

Case Else

Me.ErrorProvider1.SetError(control:=Ctrl, _

value:=sMESSAGEPROJECTERROR)

End Select

Else

Me.ErrorProvider1.SetError(control:=Ctrl, value:=””)

End If

End Sub

If one of the controls being validated has the focus when the user clicks the
Clear Settings button, the validation handling code is executed. To prevent
this we must add one line of code to the load event of the main Windows
Form. This is shown in Listing 24-34.

Listing 24-34 Code to Prevent Validation when the Clear Settings Button Is Clicked

Me.cmdClearSettings.CausesValidation = False

We can prevent the entry of bad data into a control by writing handlers
for the key press event as well.

Looking more closely at the code in Listing 24-33 may raise the ques-
tion of why we do not use a control array as we would in Classic VB. This is
because VB.NET does not currently support control arrays, and it does not
appear as if this feature will be implemented in any future version. The
solution shown is the closest workaround in VB.NET. The second extender
provider, HelpProvider, is used to associate a help file (either a .chm or .htm
file) with our application. Whenever our application is running and has
focus, the HelpProvider associates the F1 button with our application’s help

878 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 878

Practical Example—PETRAS Report Tool .NET 879

24.
EXCEL

AN
D

VB.NET

file. For the PETRAS Report Tool.NET we use a simple form-based help
system, meaning that we associate the help file with our main Windows
Form. It is much easier to set this up using Windows Form properties man-
ually at design time than to do it at runtime with code. The design-time
property settings required to create a form-based help system are the fol-
lowing:

n Set the HelpKeyword property on HelpProvider1 to the value
About.htm.

n Set the HelpNavigator property on HelpProvider1 to the value Topic.

One property of the HelpProvider that should be set in code is the
HelpNameSpace property. Doing this provides us with a more flexible
solution because we can change the location of the help file dynamically.
Listing 24-35 shows the code in the main Windows Form load event
required to set the HelpNameSpace property.

Listing 24-35 Setting the Path and Name to the Help File

’The help file in use.

Const sHELPNAMESPACE As String = “PETRAS_Report_Tool.chm”

‘Setting the helpfile to the HelpProvider component.

Me.HelpProvider1.HelpNamespace = swsPath + sHELPNAMESPACE

The swsPath is a global enumeration member that holds the path to the
application EXE file for the PETRAS Report Tool.NET.

The third extender provider is the ToolTip component. It provides us
with the option to add a Tooltip to each control in a Windows Form.
Whenever the user hovers over a control with the mouse the control’s
Tooltip is displayed.

Threading
With .NET we can leverage multithreading to create more powerful solu-
tions. It is beyond the scope of this chapter to cover multithreading in detail,
but we demonstrate a simple example. The .NET Framework includes an
extender provider, BackgroundWorker, which allows us to run code on a
separate, dedicated thread, meaning we can run our project in multithread-
ing mode. This extender provider is normally used for time-consuming
operations, but as this case shows, we can use it for other tasks as well.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 879

In the PETRAS Report Tool.NET, we use the BackgroundWorker
component to run the code that connects to the database. By using two of
its events, BackgroundWorker1_DoWork and BackgroundWorker1_

RunWorkerCompleted, we attempt to connect to the database in the back-
ground and be notified about the outcome. Listing 24-36 shows the code
for the load event of the main Windows Form followed by the code for the
two events of the BackgroundWorker component.

Listing 24-36 Code in Use for the BackgroundWorker

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

‘...

‘Settings for the BackgroundWorker component.

With Me.BackgroundWorker1

‘Makes it possible to cancel the operation.

.WorkerSupportsCancellation = True

‘Start the background execution.

.RunWorkerAsync()

End With

‘Change the cursor while waiting to BackgroundWorker

‘component has been finished.

Me.Cursor = Cursors.WaitCursor

End Sub

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _

ByVal e As System.ComponentModel.DoWorkEventArgs) _

Handles BackgroundWorker1.DoWork

‘Instantiate a new instance of the connecting

‘Windows Form.

mfrmConnecting = New frmConnecting

‘Position the Windows Form and display it.

With mfrmConnecting

.StartPosition = FormStartPosition.CenterScreen

.Show()

End With

880 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 880

Practical Example—PETRAS Report Tool .NET 881

24.
EXCEL

AN
D

VB.NET

‘Can we connect to the database?

If MDataReports.bConnect_Database() = False Then

‘OK, we cannot establish a connection to the

‘database so we cancel the background operation.

Me.BackgroundWorker1.CancelAsync()

‘Let us tell it for the other backgroundWorker

‘event - the RunWorkerCompleted.

mbIsConnected = False

Else

‘Let us tell it for the other backgroundWorker

‘event - the RunWorkerCompleted.

mbIsConnected = True

End If

‘Close the connecting Windows Form.

mfrmConnecting.Close()

‘Releases all resources the variable has consumed

‘from the memory.

mfrmConnecting.Dispose()

‘Release the reference the variable holds and prepare

‘it to be collected by the Garbage Collector (GC) when

‘it next time comes around.

mfrmConnecting = Nothing

End Sub

Private Sub BackgroundWorker1_RunWorkerCompleted _

(ByVal sender As Object, _

ByVal e As System.ComponentModel. _

RunWorkerCompletedEventArgs) _

Handles BackgroundWorker1.RunWorkerCompleted

‘If we have managed to connect to the database then we can continue.

If mbIsConnected Then

‘...

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 881

End If

‘Restore the cursor.

Me.Cursor = Cursors.Default

End Sub

On its surface, the use of the BackgroundWorker component may look
attractive. However, multithreaded application development is complex
and easy to get wrong, so it should only be used in situations where it is
absolutely necessary to run code outside the main process.

Retrieving the Data
A database connection string can be created using several different meth-
ods. For the PETRAS Report Tool.NET we create a solutionwide connec-
tion string using an application setting. This is accomplished in the Settings
tab of the solution Properties windows, as shown in Figure 24-27.

We first create a name for the setting and then select the type (Connection
string). The scope is now automatically set to Application. After placing the

FIGURE 24-27 A solutionwide connection string

882 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 882

Practical Example—PETRAS Report Tool .NET 883

24.
EXCEL

AN
D

VB.NET

cursor in the Value field a button appears on the right side. Clicking this
button displays a very useful built-in wizard for creating connection strings.

If we look in the Solution Explorer window, we notice that a new
app.config XML file has been created and added to the solution. The
app.config file will not be compiled into the executable file when we devel-
op standalone applications like the PETRAS Report Tool.NET. Instead, it
is a separate XML file that is installed alongside the PETRAS Report
Tool.NET executable. This allows us to easily update the connection string
by simply opening and editing the XML file. When we compile the solu-
tion the VS IDE creates an XML file based on the solution name, PETRAS
Report Tool .NET.exe.xml, for example, instead of using the name
app.config.

When creating a DLL, the app.config file is compiled into the DLL,
which makes it more difficult to update the connection string. This is
addressed in Chapter 25. Listing 24-37 shows how to read the connection
string setting from within our application code.

Listing 24-37 Reading the Application Setting for the Connection String

’Read the connection string into a module variable.

Private ReadOnly msConnection As String = _

My.Settings.SQLConnection.ToString()

Next we use it to initialize a new SqlConnection object, as shown in Listing
24-38.

Listing 24-38 Function to Create New SqlConnection

Friend Function sqlCreate_Connection() As SqlConnection

Return New SqlConnection(connectionString:=msConnection)

End Function

All functions that retrieve data using disconnected mode expect the
DataSet object to contain one DataTable at the time. We use a module-
level DataTable variable to populate the DataGridView control. If the
user decides to either create an Excel report or export the data to an XML
file, the same DataTable is used as an argument to one of the export
functions.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 883

Exporting Data
The MExportExcel.vb module contains all the functions required to
export data to Excel using one of the four predefined Excel templates
described earlier. The main export function, shown in Listing 24-39, takes
several arguments. Since the query has already been executed we can get
the results as a DataTable from the DataGridView control on the main
Windows Form. The other arguments provide information about the
options specified by the user when the data was retrieved from the data-
base.

Listing 24-39 The Main Export to Excel Function

Friend Function bExport_Excel(_

ByVal dtTable As DataTable, _

ByVal sClient As String, _

ByVal sProject As String, _

ByVal sStartDate As String, _

ByVal sEndDate As String) As Boolean

Because the PETRAS Report Tool.NET is a standalone application not
related to Excel, we first need to determine whether Excel exists and if so,
determine which version of Excel is available. To accomplish this we exam-
ine the value of a critical Excel-related registry entry and use it to deter-
mine the current Excel version.

The lowest version of Excel that we can support is version 2002,
meaning the tool cannot be used if version 2000 is installed. The function
uses an enumeration of Excel versions, which is defined in the MSolutions

Enumerations Variables.vb code module. To provide access to the
.NET Framework functions that allow us to read the Windows registry, we
import the namespace Microsoft.Win32. We also use regular expressions
to complete this task, so the namespace System.Text.

RegularExpressions also is imported into the code module. Listing 24-
40 shows the code for the function.

Listing 24-40 Determine Which Version of Excel Is Available

’At the top of the module.

‘To read the Windows Registry subkey.

Imports Microsoft.Win32

‘To use regular expressions.

Imports System.Text.RegularExpressions

884 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 884

Practical Example—PETRAS Report Tool .NET 885

24.
EXCEL

AN
D

VB.NET

Friend Function shCheck_Excel_Version_Installed() As Short

Const sERROR_MESSAGE As String = _

“An unexpected error has occurred “ + _

“when trying to read the registry.”

‘The subkey we are interested in is located in the

‘HKEY_CLASSES_ROOT Class.

‘The subkey’s value looks like the following:

‘Excel.Application.10

Const sXL_SUBKEY As String = “\Excel.Application\CurVer”

Dim rkVersionkey As RegistryKey = Nothing

Dim sVersion As String = String.Empty

Dim sXLVersion As String = String.Empty

‘The regular expression which is interpreted as:

‘Look for integer values in the interval 8-9

‘in the end of the retrieved subkey’s string value.

Dim sRegExpr As String = “[8-9]$”

Dim shStatus As Short = Nothing

Try

‘Open the subkey.

rkVersionkey = Registry.ClassesRoot.OpenSubKey _

(name:=sXL_SUBKEY, writable:=False)

‘If we cannot open the subkey then Excel is not available.

If rkVersionkey Is Nothing Then

shStatus = xlVersion.NoVersion

End If

‘Excel is installed and we can retrieve the wanted

‘information.

sXLVersion = CStr(rkVersionkey.GetValue(name:=sVersion))

‘Compare the retrieved value with our defined regular

‘expression.

If Regex.IsMatch(input:=sXLVersion, pattern:=sRegExpr) Then

‘Excel 97 or Excel 2000 is installed.

shStatus = xlVersion.WrongVersion

Else

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 885

‘Excel 2002 or later is available.

shStatus = xlVersion.RightVersion

End If

Catch Generalexc As Exception

‘Show the customized message.

MessageBox.Show(text:=sERROR_MESSAGE, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

‘Things didn’t worked out as we expected so we set the

‘return variable to nothing.

shStatus = Nothing

Finally

If rkVersionkey IsNot Nothing Then

‘We need to close the opened subkey.

rkVersionkey.Close()

‘Release the reference the variable holds and prepare it

‘to be collected by the Garbage Collector (GC) when it

‘comes around.

rkVersionkey = Nothing

End If

End Try

‘Inform the calling procedure about the outcome.

Return shStatus

End Function

The module MExportExcel.vb also contains a function to verify that the
Excel templates exist in the same folder as the executable file.

The function that exports data to an XML file also creates the Schema
file for it. Listing 24-41 shows the two lines of code required to generate

886 Chapter 24 Excel and VB.NET

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 886

Summary 887

24.
EXCEL

AN
D

VB.NET

these files. We actually use the methods of the DataTable object to gener-
ate the XML files. This is because ADO.NET uses XML as its underlying
data representation scheme. Both of these XML files can be opened and
studied in more detail.

Listing 24-41 Creating XML and Schema Files

...

‘Write the data to the XML file.

dtTable.WriteXml(fileName:=sFileName)

‘Create the Schema file for the XML file.

dtTable.WriteXmlSchema(fileName:=Strings.Left(_

sFileName, Len(sFileName) - 4) & “.xsd”)

...

Summary

In this chapter, we provided a brief introduction to the .NET Framework,
VB.NET, data access using ADO.NET, and Excel automation from
VB.NET. Compared to Classic VB, the .NET Framework is a completely
new and different platform. It is also a modern, advanced development
platform with a great set of tools for creating user-friendly solutions. To
fully utilize the .NET platform you must be prepared to invest significant
time exploring and learning it. As we all know, there are no real shortcuts
to learning new technology. Only hard work can accomplish the task. But
the reward, in addition to the new knowledge itself, is that we can leverage
all the knowledge from this chapter in the two chapters that follow.

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 887

024_0321508793_ch24.qxp 4/13/09 10:56 AM Page 888

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

